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Abstract. In this study, the particles of the quantum gases, namely bosons and fermions are called g-ons by
using the parameter of the fractional exclusion statistics g, where 0 ≤ g ≤ 1. With this point of departure,
the distribution function of the g-on gas is obtained by the variational, steepest descent and statistical
methods. The distribution functions which are found by means of these three methods are compared. It is
shown that the thermostatistical formulations of quantum gases can be unified. By suitable choices of g,
standard relations of statistical mechanics of the Bose and Fermi systems are recovered.

PACS. 05.20.-y Classical statistical mechanics – 03.65.-w Quantum mechanics

1 Introduction

Particles of quantum systems, including well known
fermions and bosons could be named as g-ons which obey
fractional exclusion statistics. The aim of this study is to
develop the distribution function of a g-on gas by means of
variational, steepest descent and statistical methods and
discuss the result. Furthermore, another purpose is to
unify the different thermostatistical formulations of quan-
tum gases where the concomitant distribution function of
g-on gas is used.

The outline of this paper is as follows: in Section 2.1,
Haldane statistics is obtained by the variational method
where the entropy of the g-on gas is employed. By means
of an approximate solution to Haldane statistics, an ele-
gant formula for the distribution function of the g-on gas is
found. In Section 2.2, where the steepest descent method is
applied to the partition function, an exact solution of the
distribution function is obtained. In Section 2.3, the prob-
ability of the occupation numbers and average distribu-
tion functions are investigated by the statistical method.
In Sections 2 and 3, fluctuations in the occupation num-
ber and thermodynamics of the g-on gas are discussed
respectively.

2 Derivation of the distribution function
of the g-on gas system

2.1 Variational method

Let us consider an ideal g-on gas system which consists of
N particles. Let the system be in heat and particle baths
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that evolves towards equilibrium, that is, the total energy
E and the total number of g-ons N fluctuate, but, these
quantities are conserved on the average. The entropy of
the ideal g-on system which is not in equilibrium has been
obtained from the statistical weight and is given by [1],

Sg =
K∑

k=1

gk{[1 + nk (1− g)]

× ln[1 + nk (1− g)− (1− gnk) ln [1− gnk]− nk ln nk}
(1)

where the Boltzmann constant is set to unity, gk is the
degeneracy, nk is the occupation number, K is the total
number of states; g is the parameter that characterizes the
complete or partial action of the exclusion principle i.e.
makes interpolation between quantum gases [2,3]. Follow-
ing the variational method outlined in the reference [1],
the following equation is obtained

[ln 1 + nk (1− g)](1−g) + (1− g) + ln (1− gnk)g

+ g − ln nk − 1− α− βεk = 0 (2)

where α = − µ
T , β = 1

T , εk is is the energy of the kth state
and µ is the chemical potential. After performing some
algebra equation (2) becomes:

[1 + nk (1− g)]1−g (1− gnk)g

nk
= exk (3)

where
xk = β (εk − µ) . (4)

Equation (3) is known as Haldane statistics [4].
Let us write equation (3) in a more compact form

1
y

(1− y)g = ex (5)
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where y is defined as

y =
1

1
nk

+ 1− g
· (6)

In order to get a real x on the right hand side of equa-
tion (5), y ≤ 1. This inequality imposes a condition

gnk ≤ 1. (7)

Note that for g = 1 inequality (7) gives nk ≤ 1, for g = 0;
nk can take any values and for the intermediate value nk

is restricted as nk ≤ 1
g . Therefore, inequality (7) could be

interpreted as the generalization of the Pauli Exclusion
principle.

Since it is difficult to solve equation (5), an approxi-
mation is needed for y. Expanding the factor (1 − y)g in
a Taylor series about y = 0:

(1− y)g ≈ 1− gy + O
(
y2
)
. (8)

Thus, equation (5) becomes

nk =
1

eβ(εk−µ) + 2g − 1
· (9)

The last approximation is a linear approximation to equa-
tion (3) and therefore does not satisfy inequality (7), if g
is not close enough to 0 or 1. Interesting enough, equa-
tion (9) turns out to be the Maxwell distribution when
g = 1

2 [1].

2.2 Steepest descent method

In order to get another solution of the distribution func-
tion nk we are willing to calculate it using the steepest
descent optimization method [5]. Two of the authors of
the present study FB and DD recently introduced a parti-
tion function Zg for a grandcanonical ensemble of a g-on
gas [1]. Let us write it for the extensive systems as

Zg =
K∏

k=1

{
1∑

k=0

e−xk + (1− g)
∞∑

k=2

e−xk

}
(10)

where xk is given by equation (4). The given partition
function leads to the following partition function for the
canonical ensemble

Zg =
K∏

k=1

(1 + yk) + (1− g)
(
y2

k + y3
k + ...

)
(11)

where yk = e−βεk and k denoting the quantum state εk.
Here g is a parameter that unifies the partition functions
of boson and fermion systems under g-on gas system. For
g = 0 the partition function in equation (11) becomes the
partition function of a boson system, for g = 1 it becomes
that of a fermion system. Let us find the distribution func-
tion of a g-on system using this partition function and the
steepest descent method.

In order to use the steepest descent method one has
to express the partition function as a complex integral
around a closed contour. For this purpose let us define
the function

fg (z) =
K∏

k=1

{
(1 + zyk) + (1− g)

(
z2y2

k + z3y3
k + ...

)}
.

(12)
Using this function, the partition function given in

equation (11) can be written as

Zg =
1

2πi

∮
C

fg (z)
zN+1

dz (13)

or

Zg =
1

2πi

∮
C

K∏
k=1

[(
1 + zyk

zN+1

+
(1− g) z2y2

k

(
1 + zyk + z2y2

k + ...
)

zN+1

)]
dz. (14)

This integral (or partition function) can be approximated
by using the method of steepest descent. In order to see
this let us write

eh(z) =
fg (z)
zN+1

(15)

where fg (z) is given by equation (12). Using this definition
one can rewrite h(z) as

h (z) =

ln
K∏

k=1

[(
1 + zxk

zN+1
+

(1− g) z2y2
k

(
1 + zyk + z2y2

k + ...
)

zN+1

)]

(16)

or as

h(z) =
∞∑

k=1

{
ln
[
(1 + zyk) + (1− g) z2y2

k

(
1 + zyk + z2y2

k + ...
)]}

− ln z−N+1. (17)

The function h(z) has a minimum at zo and this min-
imum is very steep because the function fg (z) consists of
infinite number of multiplication and N + 1 is very large.
Thus by using the approximation formula of the steepest
descent method, one gets an expression for the partition
function of a g-on gas as [6]

Zg
∼= [z N+1

o fg (z0) 2πf ′′ (z0)
]1/2

. (18)
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In order to find the distribution function one applies the
steepest descent condition to h(z), that is

h′(z0) = −N + 1
z0

+

∞∑
k=0

yk + (1− g)
(
2z0y

2
k + 3z2

0y
3
k + ...

)
1 + z0yk + (1− g) z2

0y
2
k (1 + z0yk + z2

0y
2
k + ...)

= 0.

(19)

Since N � 1, one can write N + 1 ≈ N. Using this
approximation and arranging equation (18) one obtains

N ≈
∞∑

k=0

z0yk + (1− g)
(
2z2

0y
2
k + 3z3

0y
3
k + ...

)
1 + z0yk + (1− g) z2

0y2
k (1 + z0yk + z2

0y2
k + ...)

·
(20)

The factor 1
z0

can be interpreted as fugacity e−βµ [6]. For
the sake of simplicity let us define a new variable as

ak = e−β(εk−µ) = e−xk = z0yk. (21)

Using the series

1 + ak + a2
k + a3

k + ... = (1− ak)−1 (22)

1 + 2ak + 3a2
k + ... = (1 − ak)−2 (23)

where ak < 1. By means of these series and the defini-
tion (21) one can write equation (20) as

N =
∞∑

k=1

ak

ak + ga2
k−2ak+1

1−2gak+ga2
k

=
∞∑

k=1

ak

(
1− 2gak + ga2

k

)
(1− ak) (1− ga2

k)
·

(24)
or

N =
∞∑

k=1

e−xk
(
1− 2ge−xk + ge−2xk

)
(1− e−xk) (1− ge−2xk)

· (25)

Since the total number of particles of a system is given as

N =
∞∑

k=1

nk (26)

the terms in equation (25) give the number of particles
which occupy the kth state. Hence for the distribution of
g-on particles it is possible to write

nk =
e−xk

(
1− 2ge−xk + ge−2xk

)
(1− e−xk) (1− ge−2xk)

· (27)

Equation (27) which unifies the distribution of the quan-
tum gases recovers the well known Bose and Fermi
distributions for g = 0 and g = 1 respectively.

In order to find a more elegant result which could be
used more easily in the calculations the term in equa-
tion (24) can be written as

ga2
k − 2ak + 1

1− 2gak + ga2
k

≈ 1 + (2g − 2)ak. (28)

By taking into account equation (28), equation (27) reads,

nk =
ak

1 + ak (2g − 1)
(29)

which is valid near g = 1 and g = 0. Let us write equa-
tion (29) explicitly:

nk =
1

eβ(εk−µ) + 2g − 1
· (30)

It is observed that equation (30) is same as equa-
tion (9) which is obtained through an approximation to
Haldane formula.

2.3 Statistical method

The partition function of g-ons which is given by equa-
tion (10) can be used to find the probability of the kth
state being occupied by nk g-ons. If the state k with an
energy εk is occupied by nk g-ons then the other states
are occupied by N -nk g-ons, where N is the total particle
number. Therefore the ratio of the partition function for
the states except kth state times e−nkxk to the partition
function gives us the probability of finding nk particles in
the kth state. In the thermodynamic limit i.e. as N →∞
this probability can be written as

P k
g (nk) =

e−nkxk
∏
i=1
i6=k

{
1∑

ni=0
e−nixi + (1− g)

∞∑
ni=2

e−nixi

}

∏
i=1

{
1∑

ni=0
e−nixi + (1− g)

∞∑
nk=2

e−nixi

}
(31)

or writing in a simplified form:

P k
g (nk) =

e−nkxk

1∑
nk=0

e−nkxi + (1− g)
∞∑

nk=2
e−nkxi

· (32)

After performing the summation equation (32) turns out
to be

P k
g (nk) =

e−nkxk (1− ge−xk)
1− ge−2xk

· (33)

It could be mentioned that equation (33) is a unified form
of the probabilities of occupation number of the quantum
gases simply bosons and fermions. One may write the dis-
tribution functions by means of equation (33) for g-ons
as

nk =
1∑

nk=0

nkP k
g (nk) + (1− g)

∞∑
nk=2

nkP k
g (nk) . (34)

After performing the summations it reads

nk =
e−xk (1− e−xk)

1− ge−2xk

[
g +

1− g

(1− e−xk)2

]
=

e−xk(ge−2xk − 2ge−xk + 1)
(1− ge−2xk) (1− e−xk)

(35)
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or more explicitly:

nk =
e−β(εk−µ)

(
1− 2ge−β(εk−µ) + ge−2β(εk−µ)

)(
1− e−β(εk−µ)

) (
1− ge−2β(εk−µ)

) (36)

which is same as equation (27) as expected.

3 Fluctuations in the occupation number

In the preceding Section we have calculated the probabil-
ity P k

g (nk) of occupying a g-on of the kth state in the
Fock space and the distribution function nk .

The deviations of mean values in the distribution func-
tion are given by the standard deviations of distributions,

σ2 = n2
k − nk

2. (37)

Therefore at first n2
k has to be calculated. For this purpose

let us write the following equation

n2
k =

1∑
nk=0

n2
kP k

g (nk) + (1− g)
∞∑

nk=2

n2
kP k

g (nk) . (38)

Substituting the expression for P k
g (nk) into equation (38)

and performing the summations one finds

n2
k =

e−xk (1− e−xk)
1− ge−2xk

[
g + (1− g)

1 + e−xk

(1− e−xk)3

]
. (39)

By means of equations (35), (37) and (38) one can calcu-
late the variance as

σ2 =
e−xk(g2e−4xk − 4ge−3xk + 6ge−2xk − 4ge−xk + 1)

(1− e−xk)2 (1− ge−2xk)2
·

(40)
and the ratio σ2

nk
2 as

σ2

nk
2 =

exk(g2e−4xk − 4ge−3xk + 6ge−2xk − 4ge−xk + 1)
(ge−2xk − 2ge−xk + 1)2

(41)
which reduces to the standard results.

4 Thermodynamics of the g-on gas

In this Section, as a concrete application of the g-on statis-
tics we would like to investigate the thermodynamics of an
indistinguishable g-on gas. The ideal g-on gas is a model
system, where the influence of quantum statistical effects
can be very well studied. Our aim is to calculate the ther-
modynamical potential of the g-on gas Φg(T, V, µ).

Φg (T, V, µ) = −kBT lnZg (T, V, z) (42)

where the summation is done over all of the quantum
states. By taking into account equation (10) one derives
approximately,

Φg (T, V, µ) = −kBT

K∑
k=1

ln
[
1 +

1
ωk

]
(43)

where
ωk
∼= 1

e−xk + g − 1
(44)

Since it is difficult to handle with the exact formula for
nk its approximation equation (10) or equation (30) is
appropriate

nk =
1

ωk + g
. (45)

Given the generalized thermodynamic potential

Φg (T, V, µ) = −pgV (46)

the pressure of the g-on gas is obtained as

pgV = kBT

K∑
k=1

ln
[
1 +

1
ωk

]
(47)

while the total number of particles is found as

Ng =
∑

k

1
ωk + g

. (48)

The state of the gas is determined by equations (47) and
(48). But one can also calculate the energy of the gas
which is given by

Eg =
∑

k

nk εk =
∑

k

εk

ωk + g
· (49)

The logarithm of the grandpartition function Qg(T ,V ,z)
is given as

Qg(T, V, z) = lnZg (T, V, z) =
K∑

k=1

ln
[
1 +

1
ωk

]
. (50)

Let one of the g-on energies εk be those of the energies of
a free quantum mechanical particle in a box of volume V .
The chemical potential or fugacity is not fixed, but the
total number of g-ons are conserved on the average and
z has to be determined from equation (48). For a large
volume the sum over all single g-on states can be given as
the single g-on density states, where spin is not taken into
account. Hence,

D (ε) = Aε1/2 (51)

can be written where

A =
2πV

h3
(2mh)3/2 . (52)

Thus the summation in equation (50) becomes

Qg(T, V, z) =

∞∫
0

ln
[
1 +

1
ωk

]
ε1/2dε (53)

where equation (51) is taken into account. When the in-
tegration is performed by parts, Q(T, V, z) is reduced to:

Qg(T, V, z) =
2
3
Aβ

∞∫
0

ε3/2ndε. (54)
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After substituting n from equation (45) and then
rearranging

Qg(T, V, z) =
2
3
Aβz

∞∫
0

ε3/2

eβε − (1− 2g) z
dε (55)

is obtained, where z is the usual fugacity i.e. z = eβµ. The
integral is calculated using the related formula on page 326
of reference [7]. Thus one concludes that for a g-on system

Qg(T, V, z) =
2
3
AβzF5/2 (g, z) (56)

where the definition

Fn (g, z) =
Γ (n)

z (1− 2g)βn

K∑
k=1

[z (1− 2g)]k

kn
(57)

is adopted in which Γ (n) is the usual gamma function.
Then the state of the g-on system is determined by the
following equation:

pgV = kBTQg (T, V, z) . (58)

Thus, the equation of state of fermions and bosons is uni-
fied.

In the thermodynamics limit, that is in the limit of
infinite volume with particle density held fixed,particles
in the ground state, having no contribution of the kinetic
energy to the pressure, then, in terms of the thermal wave-
length, the pressure of the Bose system becomes, as it is
expected,

p0 =
kT

λ3

∞∑
k=1

zk

k5/2
(59)

where Γ
(

5
2

)
= 3

√
π

4 is taken and λ is the thermal wave-
length [8].

In a similar manner, the thermodynamical properties
of a Fermi system follows immediately from the logarithm
of the grandpartition function of a g-on system, which
is given by equation (43). In terms of the thermal wave-
length, the pressure of the Fermi system is

p1 = gs
kBT

λ3

∞∑
k=1

(−1)k−1 zk

k5/2
(60)

where gs is a factor due to spin [8].
For a large volume, in accordance with equation (49),

the total number of g-ons could be written as

Ng (T, V, z) = Az

∞∫
0

ε1/2

eβε − (1− 2g) z
dε (61)

assuming that single number of g-on states can be calcu-
lated in terms of integrals. Calculation of the integral in
equation (61) using the related integrals in reference [7]
on page 326 leads to

Ng (T, V, z) = AzF3/2 (g, z) (62)

where F3/2 (g, z) is defined by equation (58) [8]. If g = 0
and g = 1 are substituted in equation (62) the formula for
the total number of Bose system N0 (T, V, z) and Fermi
system N1 (T, V, z) are respectively recovered .

For a Bose system the total number of particles
N0 (T, V, z) including ε = 0 energy states, is found to be:

N0 (T, V, z) = AzF3/2(z) +
z

1− z
(63)

where the last term represents the contribution of the en-
ergy level ε = 0 to the mean particle number.

In a similar manner, for the total number of fermions
one gets

N1 (T, V, z) = gs
V

λ3

∞∑
k=1

(−1)k−1 zk

k1/2
(64)

where Γ (3/2) =
√

π/2 is taken. This is an expected
standard result [8].

5 Conclusions

This study has been initiated from the point of view that
bosons and fermions, which obey quantum statistics, could
be regarded as g-ons which obey fractional statistics. In
this paper, Haldane statistics is rederived by variational
method where entropy of the g-on gas is involved. Due
to the importance of the distribution function, by means
of steepest descent and statistical methods, mean occupa-
tion number is derived where partition function of g-on
gas is used. It is concluded that mean occupation number
which is found by these methods lead to same expres-
sions. Within this context the probabilities of occupation
number of g-on gas is also calculated which unifies the
probabilities of quantum gases.

The approximate solutions of the distribution function
of a g-on gas system, which is found from the variational,
steepest descent and statistical methods are developed to
an elegant expression that recovers FD distribution for g =
1, and BE distribution for g = 0. It should be remarked
that the partition function which is used in this study is
appropriate for the g-on gas since it leads to the same
approximate expression for the mean occupation number
with Haldane statistics.

As an application of the mean occupation number, the
thermodynamical formulation of the g-on gas is derived
which gives the opportunity to unify the thermostatisti-
cal formulation of quantum gases, simply fermions and
bosons.
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